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Dynamics of drop coalescence at fluid interfaces
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Drop coalescence was studied using numerical simulations. Liquid drops were made
to coalesce with a body of the same liquid, either a reservoir or a drop of different
size, each with negligible impact velocity. We considered either gas or liquid as a
surrounding fluid, and experimental results are discussed for the gas–liquid set-up.
Under certain conditions, a drop will not fully coalesce with the liquid reservoir,
leaving behind a daughter drop. Partial coalescence is observed for systems of low
viscosity, characterized by a small Ohnesorge number, where capillary waves remain
sufficiently vigourous to distort the drop significantly. For drops coalescing with a flat
interface, we determine the critical Ohnesorge number as a function of Bond number,
as well as density and viscosity ratios of the fluids. Studying the coalescence of two
drops of different sizes reveals that partial coalescence may occur in low-viscosity
systems provided the size ratio of the drops exceeds a certain threshold. We also
determine the extent to which the process of partial coalescence is self-similar and
find that the viscosity of the drop has a large effect on the droplet’s vertical velocity
after pinch off. Finally, we report on the formation of satellite droplets generated
after a first pinch off and on the ejection of a jet of tiny droplets during coalescence
of a parent drop significantly deformed by gravity.

1. Introduction
The impact of a drop of fluid onto a reservoir or a second drop has long been

a problem of interest to physicists owing to its relevance in raindrops dynamics
(Berry & Reinhardt 1974), production of ocean mist and airborne salt particles (Raes
et al. 2000), foams and emulsions (Bhakta & Ruckenstein 1997) and more generally
vorticity generation near an interface through the formation of a vortex ring
(Thompson & Newall 1885; Sarpaya 1996; Dooley et al. 1997).

Depending on its impact velocity, the drop may either bounce or coalesce or
splash as it hits the interface of a liquid reservoir (Cai 1989; Rein 1996; Nietzel &
Dell’Aversana 2002). Collisions between drops may also result in temporary
coalescence and fragmentation (Orme 1998). When the kinetic energy of the drop is
small, the surrounding fluid is slowly expelled from the gap separating the two fluid
masses as the drop approaches the second interface. Drops may then appear to ‘float’
on the interface for a few seconds, as first reported by Reynolds (1881). Several authors
have since been interested in this phenomenon and have attempted to measure or
calculate the residence time of drops on a horizontal interface (Cockbain & McRoberts
1953; Linton & Sutherland 1956; Charles & Mason 1960a; Gonipath & Koch 2002).
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Eventually, the thickness of the gap of surrounding fluid becomes sufficiently small,
between 10 and 100 nm, for van der Waals force to become important, at which
point the two interfaces coalesce and the drop comes in contact with the bulk fluid
(Hahn, Chen & Slattery 1985). As surface tension acts to minimize the surface energy
of the interface, the width of the neck joining the fluid masses progressively widens.
Simultaneously, fluid within the drop is accelerated towards the bulk fluid by the
surface tension pulling on the top of the drop. This mechanism has been described by
early investigators, and the motion of the bulk fluid after coalescence of liquid drops
was studied in the 19th century by both Reynolds (1875) and Thompson & Newall
(1885) as a source of vorticity.

The coalescence of drops with a flat interface may either result in the total
absorption of the drop within the bulk fluid or, alternatively, in the partial coalescence
of the drop, thus leaving a smaller drop to rebound on the interface (Charles & Mason
1960a). Partial coalescence may occur several times in succession to form what has
been termed a coalescence cascade (Thoroddsen & Takehara 2000). This process
occurs within a few milliseconds and may be visualized using a high-speed camera.
Recently, a possible explanation of the multiple coalescence of drops covered with
surfactant has been suggested (Pikhitsa & Tsargorodskaya 2000). However, partial
coalescence has been observed even in the absence of surfactants (Thoroddsen &
Takehara 2000; Aryafar & Kavehpour 2006; Chen, Mandre & Feng 2006) and
a mechanism for such partial coalescence was presented in Blanchette & Bigioni
(2006).

When the fluid in which the drop is initially suspended is gaseous, an interesting
feature of the coalescence cascade is the large rebound height of the smaller droplet
on the interface, which can greatly exceed its initial height. Although the bouncing
of drops on super-hydrophobic solid surfaces may exhibit very large restitution
coefficients (Richard & Quéré 2000), the rebound of drops on fluid interfaces typically
results in large energy loses (Jayaratne & Mason 1964; Bach, Koch & Gonipath 2004).
Therefore, drops resulting from partial coalescence must impact the interface with
a large velocity in order to reach heights of several times their radius (Honey &
Kavehpour 2006).

We present here numerical simulations of the coalescence of a drop with either a
horizontal interface or a drop of a different size. Simulations of flows where surface
tension plays an important role are notoriously difficult to implement. Because of
their relatively low computational requirements, boundary integral methods were
first developed and applied to problems where inertia could be neglected (e.g.
Pozridkis 1992) or where viscous effects were absent (Longuet-Higgins & Cokelet
1976). Volume of fluids methods capable of incorporating viscous and inertial effects
and of solving the full Navier–Stokes equations, with the addition of a local force near
the interface modelling surface tension, were later developed (Lafaurie et al. 1994).
Alternatively, one may keep track of the position of the interface using markers,
resulting in better accuracy at the expense of some flexibility (Popinet & Zaléski 1999,
2002). Level set methods (see e.g. Sethian 1999) have also been used successfully to
simulate the evolution of fluid interfaces. They require somewhat more complicated
implementations but recover the flexibility to handle topological changes (Sussman,
Smereka & Osher 1994). For cases where increased resolution may be required in
small localized regions of the flow, adaptive meshing near the interface has been used
(Notz & Basaran 1999) and may be combined with level set methods (Sussman et al.
1999). Reviews of the different numerical approaches to simulations of interfacial
flows may be found in Scardovelli & Zaléski (1999) and Osher & Fedkiw (2001).



Drop coalescence 335

2R

g

n̂

ρo, μo

ρi, μi
σ

Figure 1. Initial conditions of an axially symmetric drop on a flat interface. Coalescence has
just begun and the fluid is assumed to be at rest.

We describe the conditions required for a drop to undergo multiple coalescence as
it comes into contact with a horizontal surface. Our analysis is based on numerical
simulations and experiments where multiple coalescence is observed in detail with
a high-speed video camera. We analyse the pinch off mechanism and describe the
possible configurations a drop may take after coalescing with a horizontal interface
or a second drop. The governing equations and our numerical approach to solving
them are described in § § 2 and 3, respectively. Our experimental set-up is described
in § 4 and our numerical results and experimental results are presented in § 5, and we
conclude with a brief outlook onto future research in § 6.

2. Governing equations
We investigate the coalescence of a drop coming slowly into contact with a

horizontal interface, as illustrated in figure 1. Fluid in the drop is identical to that
in the lower region and will be referred to as the inner fluid; fluid surrounding the
drop will be referred to as the outer fluid. Before coalescence is initiated, the outer
fluid must be expelled from the gap separating the drop and the interface. Provided
the downward velocity of the drop is initially small, coalescence may be delayed for
several seconds as the outer fluid drains from the gap (Reynolds 1881; Gonipath &
Koch 2001). The drop then essentially comes to rest before coalescence occurs. We
study here the evolution of systems where the drop is initially at rest and coalescence
is initiated at time t = 0.

Both fluids obey the Navier–Stokes equations and are coupled through tangential
and normal stress balances at the interface:

ρi((ui)t + ui · ∇ui) = −∇Pi + gρi + μi∇2ui (2.1)

ρo((uo)t + uo · ∇uo) = −∇Po + gρo + μo∇2uo (2.2)

τ̂ · [(μi(∇ui + (∇ui)
T )) − (μo(∇uo + (∇uo)

T ))]|S · n̂ = 0 (2.3)

n̂ · [(−Pi
¯̄I + 2μi(∇ui + (∇ui)

T )) − (−Po
¯̄I + 2μo(∇uo + (∇uo)

T ))]|S · n̂ = −2σκ ′ (2.4)

where the subscript t denotes a time derivative, the indices ‘i’ and ‘o’ indicate the
inner and outer fluids respectively and the position of the interface is denoted by S.
Here g is the gravity vector (of magnitude g), u the velocity field, ρ the density, P the
pressure, μ the viscosity, σ the surface tension, τ̂ a vector tangent to the interface, n̂
the unit normal vector pointing towards the outer phase and κ ′ the mean curvature of
the joined interface (figure 1). Note that the mean curvature is defined as κ ′ = ∇S · n̂,
where ∇S · is the divergence operator along the interface (Lafaurie et al. 1994). We
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assume that no evaporation occurs and that the system is isothermal and free of
surfactant, thus ensuring that the interface moves with the fluid and that surface
tension is constant along the interface. Moreover, we consider that both fluids are
incompressible

∇ · ui = ∇ · uo = 0. (2.5)

To focus on partial coalescence, we consider systems where surface tension effects
are dominant over those of gravity. We thus restrict our attention to systems where
the Bond number, defined as Bo = g(ρi − ρo)R

2/σ , where R is the initial radius of
the drop, is smaller than unity. The Bond number captures the ratio of characteristic
gravitational to surface forces. In the absence of a sizeable initial drop velocity and
for fluids of relatively low viscosity, the time scale of motion will be dominated by
a balance between surface tension and inertial forces tn =(ρiR

3/σ )1/2 (Thorodssen &
Takehara 2000). If, however, viscous effects balance surface tension, a typical time
scale of motion is tv = Rμi/σ . To estimate the relative contributions of the viscous
and inertial forces, we consider the Ohnesorge number Oh= tv/tn =μi/(ρiRσ )1/2. We
will mostly be concerned with cases where Oh � 1, as they turn out to be the most
interesting, and we therefore non-dimensionalize (2.1)–(2.4) using tn, R and ρi as
typical time, length and density scales. Note that the Ohnesorge number is analogous
to the inverse of the Reynolds number if we consider that a typical velocity is
ũ= R/tn ∼ (σ/(ρR))1/2.

To facilitate the numerical resolution of the governing equations, we replace the
condition of tangential and normal stress balance on the interface with a localized
forcing term acting only on the interface and playing the role of surface tension
(Lafaurie et al. 1994). We therefore add to the Navier–Stokes equation a term of the
form F (x) = σκ ′n̂

∫
S
δ3( = x − x0) dx0, where δ3 is a Dirac delta function of dimension

3 and the integral is taken on the interface. This forcing term is then effectively a
delta function of dimension 1 which is non-zero on the interface only. In the absence
of surface tension gradients, F (x) corresponds to purely normal forcing. Using this
formulation has the advantage of replacing complicated boundary conditions with an
advection equation and a forcing term while preserving the validity of the momentum
equation. The interface is then simply advected by the fluid.

We also introduce a volume of inner fluid function, C, such that C = 0 in the outer
fluid and C = 1 in the inner fluid. This allows us to introduce a fluid density and
viscosity valid everywhere in our system: ρ ′ = ρo +C(ρi −ρo) and μ′ = μo +C(μi −μo),
respectively. We may then rewrite (2.1)–(2.5) in non-dimensional form as

ρ(ut + u · ∇u) = −∇P + ∇ · (μ(∇u + (∇u)T )) + σκδs n̂ + CBo ĝ, (2.6)

St = u, (2.7)

∇ · u = 0, (2.8)

where ĝ is a unit vector in the direction of gravity, κ = κ ′R is the non-dimensional
curvature and we defined ρ = (1 − C)/α + C and μ = (1 − C)/λ + C, with α = ρi/ρo

and λ=μi/μo, the density and viscosity ratios, respectively.

3. Numerical model
In order to effectively solve (2.6)–(2.8), we exploit the axial symmetry of our

system and neglect angular dependencies. The interface can then be represented by
a one-dimensional curve, thus eliminating complications arising from tracking two-
dimensional surfaces. It is known that, at least in liquid–liquid systems, the film of
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Figure 2. (a) Our numerical simulations are performed on a staggered grid and boundaries
are made to coincide with the dashed lines. Components of the deviatoric stress tensor are
defined as S11 = μux , S22 = μvy and S12 = (1/2)μ(uy + vx). (b) The interface is represented as a
cubic spline interpolation between markers (s1, s2, etc).

outer fluid typically ruptures off centre, which generates temporarily asymmetrical
flows (Charles & Mason 1960b). The initial neck very quickly extends in all directions,
however, which brings the flow to near symmetry. Comparisons with experiments
(Blanchette & Bigioni 2006) confirmed that while our assumption of axial symmetry
does not always allow us to precisely model the very early stages of coalescence,
our model accurately captures the later developments of the flow. In particular, the
subsequent pinch off that sometimes occurs and leads to multiple coalescence is well
reproduced.

We use a classic marker and cell (MAC) algorithm to solve the Navier–Stokes
equations and we additionally take special care in estimating the forces and pressure
near the interface. Following previous authors (Peyret & Taylor 1983), we solve (2.6)
by discretizing the spatial domain into a fixed, Cartesian staggered grid as shown in
figure 2(a). The surface force is treated separately as explained below. Derivatives
are computed using centred differences and the equations are marched forward in
time using a backward Euler method. At each time step, we first find a temporary
velocity field u∗ by ignoring the pressure term. The nonlinear terms in the momentum
equations are calculated via an upwinding scheme and the viscous terms using centred
differences. We then find the actual velocity by adding the pressure term (Lafaurie et al.
1994):

u(t + �t) = u∗(t + �t) − �t

ρ
∇P (t + �t), (3.1)

where P is chosen via a a projection method (Brown, Cortez & Minion 2001) so as
to render the velocity field solenoidal, and therefore satisfies a Poisson-type equation

∇ ·
(

�t

ρ
∇P (t + �t)

)
= ∇ · u∗(t + �t). (3.2)

Equation (3.2) is solved using a multigrid iterative algorithm (e.g. Briggs 1987). This
method first solves (3.2) iteratively on a coarse grid by discretizing both sides of
the equation using centred differences. The grid is then progressively refined and
one iteration of the iterative scheme is computed for each new grid refinement. This
algorithm was found to perform well despite abrupt density variations, provided the
density ratio was kept at or below 100, as is detailed below.



338 F. Blanchette and T. P. Bigioni

We keep track of the position of the interface by advecting markers using a first-
order Euler method. The position of the interface between markers is interpolated
by parameterizing the curve by its arclength s and using cubic splines in x and y.
The interface is then differentiable at least once everywhere. To prevent accumulation
of markers, we redistribute them evenly after each time step. We note that this
redistribution may actually be done less frequently; simulations performed while
redistributing markers every 10 time steps yielded results that were virtually identical
to those obtained with markers redistributed at every step.

To compute the force due to surface tension, we utilize an axisymmetric version of
the algorithm presented by Popinet & Zaléski (1999). To calculate the horizontal and
vertical contributions of the surface tension force, we integrate the term κδs n̂ over a
rectangle of width hx and height hy centred at the point where u and v are defined,
respectively, as shown in figure 2(b). Integrating over a delta function located on the
interface is equivalent to performing a line integral along the portion of the interface
that is inside each grid cell, between s = s1 and s = s2 in figure 2(b). The curvature
term then becomes

T =

∫ s2

s1

κ n̂ ds =

(
dx

ds
,
dy

ds

)∣∣∣∣
s2

−
(

dx

ds
,
dy

ds

)∣∣∣∣
s1

+

∫ s2

s1

1

x

dy

ds

(
− dy

ds
,
dx

ds

)
ds. (3.3)

Here the first two terms on the right-hand side account for the two-dimensional
curvature while the remaining integral describes the radial curvature. The latter
integral is evaluated numerically via a trapezoidal method, except at the symmetry
axis where the mean curvature is twice the two-dimensional curvature of the curve
(x(s), y(s)). Finally, to define the surface force at a point, we divide T by the area
over which integration was performed. In our numerical scheme, we therefore obtain
κδs n̂ = T/(hxhy). It is worth noting that both the radial and the two-dimensional
curvature are required to observe pinch off. The former provides the inward forces
generating pinch off from a nearly cylindrical drop, while the latter allows the initial
opening of the neck joining drop and reservoir.

Knowing the precise position of the interface also allows us to accurately locate
pressure jumps across the interface. For example, to calculate the vertical pressure
gradient centred at vi,j in figure 2(b), we again consider the integral of ∂P/∂y over
a grid cell centred on vi,j . The pressure on either side of the interface is assumed to
be that at the nearest grid point on that same side of the interface, and we find (see
Popinet & Zaléski 1999 for more details)

IPi,j =

∫
vi,j

∂P

∂y
dx dy ≈

∫ xi+1

xi

Pj − Pj−1 dx

≈ Pi−1,j (x(s2) − xi) + Pi,j (xi+1 − x(s2))

− Pi−1,j−1(x(s1) − xi) + Pi,j−1(xi+1 − x(s1)). (3.4)

In the discretized equations, we may then replace a classical finite difference
approximation of ∂P/∂y with IP/(hxhy). Pressure gradients near the interface are
therefore computed much more accurately than in methods where the interface is
smeared. Because such methods do not track the position of the interface but rather
the volume fraction occupied by one fluid in each cell, they have the inconvenience
of generating artificial currents with typical velocity ua ∼ 0.005σ/μ (Lafaurie et al.
1994). Using the pressure correction described above virtually eliminates such artificial
currents.
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For grid cells in the proximity of the interface, the local density and viscosity is
obtained from the volume fraction of inner fluid, C. Rather than computing the
evolution of C as a quantity transported by the fluid, we use the position of the
interface to determine at each time step the fraction of each grid cell occupied by the
inner fluid. The volume of inner fluid in each cell is found by discretizing the portion
of the interface within each cell in N =100 parts and summing the volume between
the interface and the boundary of the cell using the method of cylindrical shells.
Conservation of mass is therefore not directly enforced, but we find that a resolution
of approximately 40 grid points per non-dimensional unit length is sufficient to
conserve mass to an accuracy better than 1 %.

Because the position of the interface is tracked with markers, topological changes
such as coalescence or pinch off must be handled explicitly. We only allow pinch
off to occur at the rotation axis. We define a critical radius rc such that pinch off
occurs when the axial position of the interface becomes less than rc. We then split
the original surface into two disjoined interfaces, which we separate by half a cell
width. Coalescence may be handled in a similar manner, by merging two interfaces
that come within a given distance of each other. For drops larger than 1 micron,
our code cannot accurately determine when coalescence occurs because the thickness
of the film of outer fluid may be several orders of magnitude smaller than the drop
itself, and cannot be resolved. We focus here on the dynamics of motion starting
immediately after coalescence has been initiated and do not attempt to capture the
onset of coalescence.

Our simulations are initiated with fluid at rest everywhere and with the drop
connected to the lower interface through a thin neck, as shown in figure 1. Unless
otherwise stated, we consider that the drop is initially spherical and that the interface
is horizontal and planar. The boundary conditions associated with this formulation
have the advantage of not involving any free boundaries: we only require no-slip on
the bounding walls, i.e. u = 0, and symmetry about the rotation axis. The position
of the interface at the walls is therefore pinned. In theory, the interface should be
allowed to move along the wall through a moving contact line. However, in the cases
we are interested in, the side walls are positioned sufficiently far from the drop so as
to play no dynamical role. In particular, capillary waves reflected at the boundaries
never come into play provided the width of the domain is six non-dimensional units
or larger. The boundaries of our domain are made to coincide with the dashed grid
of figure 2(a) so that no values of the pressure or stress need to be imposed at the
boundary. Velocities normal to the boundaries are directly set to zero. At no-slip
boundaries, tangential velocities are made to be zero by adding a point outside the
physical domain where the tangential velocity is equal and opposite to that just inside
the boundary. At the rotation axis, the tangential stress is set to zero.

4. Experimental set-up
Coalescence events were observed experimentally in an air–liquid system for a

range of Bond numbers and Ohnesorge numbers, as determined by the drop size,
density, viscosity and surface tension. We studied drops as large as allowed by their
stability under gravitational effects, so that Bo < 1. Drops were thus nearly spherical
at the onset of coalescence. The imaging of small drop sizes was limited by the
camera resolution, but drops as small as ∼60 μm in diameter could be measured.
Experiments performed with pure water gave results that were difficult to reproduce
and also suggested lower than expected surface tensions. This was consistent with
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Liquid Bo Oh Time Liquid Bo Oh Time

Hexane 0.67 0.0025 1.0903 n-Dodecane 0.59 0.0087 1.17
Hexane 0.65 0.0025 1.00 n-Dodecane 0.29 0.010 1.31
Hexane 0.64 0.0025 1.02 n-Dodecane 0.28 0.010 1.35
Hexane 0.43 0.0028 1.16 n-Dodecane 0.27 0.011 1.41
Hexane 0.076 0.0043 1.38 n-Dodecane 0.075 0.014 1.41
Hexane 0.067 0.0045 1.43 n-Dodecane 0.073 0.015 1.65
Hexane 0.023 0.0059 1.48 n-Dodecane 0.047 0.016 1.63
Toluene 0.38 0.0035 1.23 n-Dodecane 0.047 0.016 1.66
Toluene 0.077 0.0053 1.52 n-Dodecane 0.045 0.016 1.77
Toluene 0.057 0.0057 1.49 n-Dodecane 0.018 0.021 1.75
Toluene 0.048 0.0059 1.75 n-Dodecane 0.018 0.021 1.90
Toluene 0.015 0.008 1.86 n-Dodecane 0.012 0.023 1.74
Toluene 0.006 0.01 1.86 n-Dodecane 0.0051 0.028 2.14

Table 1. Representative measurements of pinch off times, non-dimensionalized with tn =√
ρiR3/σ , of a liquid surrounded by air. We have discarded any measurement with an

uncertainty greater that 5 %, corresponding to exceptionally small drops whose radius and
pinch off time are difficult to resolve. The drop radii were estimated from recorded high-speed
videos. (The corresponding properties used to compute Ohnesorge and Bond numbers are
shown in table 1.)

contamination of the water surface, due to its very large surface tension. To avoid
surface contamination, measurements were restricted to liquids with low surface
tensions, such as toluene, hexane, and n-dodecane. Properties of these liquids found
in the literature (Oliviera, Gonzalez & Oliviera 1999; Lide 2002; Tian & Huizhou
2007) are given in table 1.

A 3 ml glass container was rinsed repeatedly with the solutions before filling to avoid
contamination. Solutions were frequently discarded over the course of experiments
to avoid surface contamination and temperature gradients due to evaporation and
the Marangoni effects that could arise from either. The container was filled until the
liquid level was slightly above the rim so that the camera could capture images at zero
angle. Drops were placed gently on the liquid–air interface with a glass pipette, by
hand, using fluid taken from the container. The drops were illuminated from behind
through a translucent screen to achieve a silhouetting effect. This provided excellent
contrast for drop measurements. Images of the coalescence process were recorded
using a Phantom V7 high-speed camera at 47 000 frames per second. Only drops that
coalesced with negligible vertical velocity were considered.

5. Results and discussion
5.1. Validation of the numerical method

We begin our study by verifying the validity of our numerical simulations. We first
focus on the air–water system, water being the inner fluid. The large density and
viscosity ratios associated with this system render exact simulations difficult. Using
the actual air and water densities yields a density ratio of α ∼ 800. For such a high
value of α, a resolution of approximately 2048 × 2048 grid points is required, over
a 6 × 6 domain, to ensure mass conservation within a few per cent. However, we
note that lower values of α produce essentially the same flow while being much less
computationally demanding. For α > 5, we have found that our results are virtually
independent of the density ratio, as can be seen in figure 3(a) where the evolution
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Figure 3. (a) Time evolution of the neck radius for various density (α) and viscosity (λ) ratios.
Once the radius falls below the pinch off threshold, simulations are interrupted and pinch off
is considered to have occurred. The number of grid points was N = 256 in a 6 × 6 domain.
(b) Height of the top of the drop as a function of time for various resolutions, with α = λ= 10.
(c) Neck radius as a function of time for various initial opening angle, θ0, of the connection
between the drop and lower reservoir. Parameters used were Bo = 0.013, Oh =0.0025.

of the distance to the axis of the drop (neck width) is shown for various values of
α and λ. We have therefore elected to simulate air–water systems using α = λ= 10,
corresponding to an air density of 100 kg m−3. This allows us to use a coarser
resolution and maintain a computational time of a few hours.

Figure 3(b) shows the position of the top of the drop as a function of time for
an air–water system resulting in pinch off. While a resolution of 128 grid points is
insufficient to adequately capture the motion of the drop, we see that resolutions of
256 and 512 grid points yield nearly identical results before pinch off. In particular,
oscillations of the top of the drop due to capillary waves are well resolved in both
cases. After pinch off, the two sets of simulations diverged progressively as the recoil
of the daughter drop and its bouncing of the reservoir involved smaller length and
time scales. Here we focussed on the dynamics of the drop before pinch off is reached
and a resolution of 256 × 256 was therefore sufficient. We also verified that mass and
total energy (the sum of kinetic, potential, surface energy and dissipated energy) are
conserved to within a few per cent for such a resolution.

We also verified that the choice of the initial width of the neck connecting the
drop to the lower reservoir had no influence on the coalescence outcome, provided it
was not too wide. We show in figure 3(c) the time evolution of the neck width for
various initial configurations. The drop is always assumed to be spherical, except for
an opening at the bottom where it connects to the reservoir. Varying the angle of the
opening, θ0, within reason, made no difference in the progression of the coalescence
process, other than to provide a head start to drops initiated with a larger opening
angle.

Finally, we have verified that features that may easily be observed in experiments,
such as the radius of the daughter drop, Rd , and the time required for pinch off,
tp , agree well with those obtained in our simulations. For both Rd and tp , we found
good agreement between our simulations, experiments and published data (Charles &
Mason 1960b; Thoroddsen & Takehara 2000; Chen et al. 2006). Therefore, provided
a sufficiently fine resolution is used, our simulations allow for the accurate description
of the dynamics of motion preceding pinch off.

5.2. Pinch off mechanism

The mechanism by which a drop coalescing with a horizontal interface forms a smaller
drop has recently been explained (Blanchette & Bigioni 2006). We show in figure 4(a)
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Figure 4. Time evolution of the interface of a water drop surrounded by air. The drop is
initially at rest and a small neck joins it to the water below the interface. After pinch off, the
daughter drop is shown as a dashed line. Here the initial drop radius was 0.5 mm and the
corresponding non-dimensional parameters were Bo = 0.03, Oh = 0.0053, α = λ= 100.

time sequence of typical simulation results obtained for water drops in air displaying
the pinching of a drop. (A corresponding video may be found in the supplementary
material at faculty.ucmerced.edu/fblanchette/jfm/dropmovies.html.) Capillary waves
generated by the initial expansion of the neck travel upward along the drop’s surface
and generate oscillations of the top of the drop (see figure 3). These oscillations
significantly deform the drop, stretching it vertically to form a nearly cylindrical drop.
As the drop is being stretched vertically, surface tension acts to pull the sides of the
drop towards the centre. Provided capillary waves have sufficiently delayed the vertical
collapse, pinch off will occur and a smaller drop will be left above the interface. If
the waves are damped before they reach the summit of the drop, the vertical collapse
will overtake its horizontal counterpart and no pinch off will occur. It was found that
a significant fraction of the wave amplitude will be dissipated if

(Rk)3/2πμi/(σρiR)1/2 = (Rk)3/2πOh = O(1), (5.1)

where k is the dominant wavenumber. In an air–liquid system, a critical value of Oh

was found to be approximately 0.026, in the limit of small Bo.
After pinch off, the recoil of the lower part of the daughter drop causes it to oscillate

violently as it progresses downward. The downward motion of the drop is mostly due
to its velocity at the time of pinch off, as the effect of gravity is comparatively small.
Upon hitting the interface, the daughter drop penetrates to a depth approximatively
equal to its radius before rebounding.

5.3. Critical Ohnesorge number

We used numerical simulations to determine the critical Ohnesorge number as a
function of Bond number, density ratio and viscosity ratio. The initial shape and
position of the drop and lower surface are obtained in one of two manners. In
the simplest case, labelled ‘spherical’, we consider a spherical drop and a planar
surface with a small overlap. Alternatively, we first simulate a drop coming to rest on
a horizontal fluid interface. We then use the resulting deformed drop and interface
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Figure 5. (a) Initial conditions used for Bo = 0.5. The dashed curve shows a spherical drop
overlying a flat surface (referred to as ‘spherical’). The solid curve shows a drop resting on an
interface, both deformed under the influence of gravity (referred to as ‘deformed’). (b) Critical
Ohnesorge number as a function of Bond number in liquid–liquid systems for both sets of
initial conditions. Here the fluid viscosities were exactly matched (λ=1) and the densities were
nearly matched (α = 1.05).

position as an initial condition, labelled ‘deformed’, and initiate coalescence by joining
the surface of the drop to that of the bulk fluid (see figure 5). We fix two of the
three parameters and select several values of the third. Varying only the Ohnesorge
number, we observe that pinch off occurred only for values of Oh below a critical
value, Ohc.

Figure 5(b) shows the dependence of Ohc on Bond number for liquid–liquid
systems, where α = 1.05 and λ= 1. A similar plot for gas–liquid systems may be
found in Blanchette & Bigioni (2006). In all cases, pinch off is seen to occur at small
Oh and Bo. The dependence of Ohc on the Bond number appears to be relatively
weak and linear. Not surprisingly, larger Bond numbers are not favourable to pinch
off as they correspond to an increased influence of gravity and thus accelerate vertical
collapse. When deformed initial conditions are used, Ohc is decreased because sagging
drops require longer horizontal collapses and shorter vertical collapses. Somewhat
surprisingly, both air–liquid and liquid–liquid systems display similar values of Ohc,
with larger values of α and λ corresponding to slightly larger Ohc.

Focusing on spherical drops of small Bond numbers, we investigate the effect of
the fluid density (α) and viscosity (λ) ratios for α � 1 and λ� 0.3. As both the inner
and outer fluids affect wave dissipation and inertia, we look for an analogue of the
critical Ohnesorge number in terms of a weighted viscosity, μi(1 + b/λ), and density,
ρi(1 + a/α), with a and b constants to be determined. Figure 6(a) shows that the
square of the critical Ohnesorge number depends linearly on the normalized outer
density, indicating that the use of a weighted density is appropriate to describe the
critical conditions at which partial coalescence occurs. Fitting the numerical data
yields a = 2.22 ± 0.1, indicating that the density of the outer fluid is more influential
than that of the inner fluid. This may be understood from the consideration that the
volume of displaced outer fluid exceeds that of the inner fluid. Similarly, figure 6(b)
shows that the inverse critical Ohnesorge number scales linearly with the normalized
outer viscosity. Fitting the numerical data yields b = 0.53 ± 0.1. Here the inner viscosity
appears as most influential, presumably because most of the wave dissipation occurs
inside the drop where the fluid motion is constrained to a smaller space.
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Figure 6. (a) Critical Ohnesorge number squared as a function of the fluid density ratio in a
system of matched viscosities (λ=1) and where gravity has a negligible influence (Bo = 0.02).
(b) Dependence of the inverse critical Ohnesorge number on the viscosity ratio in a liquid–liquid
system (α = 1.05) at low Bond number (Bo = 0.02).
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Figure 7. Comparison of (5.2) with experimental observations of partial (closed symbols) and
total (open symbols) coalescence from different authors. Data was restricted to Bond numbers
smaller than 0.1, and the density ratio was set to 1 for liquid–liquid systems and 700 for
gas–liquid systems.

An approximate compounded criterion that fits well with all our simulation results
is that pinch off occurs if

Oh(1 + 0.53/λ)√
1 + 2.22/α

< 0.026 − 0.013Bo. (5.2)

This criterion was obtained for α between 1.05 and 10, λ between 0.3 and 10 and
Bo between 0 and 1, all of which were only varied independently. Criterion (5.2)
was compared against available data for relatively small Bond numbers as shown in
figure 7. In the regime where computations were performed, the agreement between
experimental data and (5.2) is found to be good. However, in cases where the outer
fluid was more viscous than the inner fluid, λ � 0.3, (5.2) appears to underpredict the
critical Ohnesorge number. We note that partial coalescence in systems with large
outer viscosities were also reported to have markedly different critical Ohnesorge
number, pinch off time and radius of the daughter drop (Gilet et al. 2007). The
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Figure 8. Time of pinch off as a function of the Ohnesorge number for spherical drops in
liquid–liquid (α = λ= 1) and gas–liquid (α = λ= 10) systems. The Bond number here was kept
fixed at Bo = 0.02.

regime λ< 0.3 has not been explored in detail here and it is possible that, in this more
viscous regime, viscous effects were not properly accounted for at the resolution used
in our simulations. Future investigation of this regime thus appears needed.

5.4. Self-similarity

Previous authors have observed that multiple coalescence yields a daughter drop with
radius Rd almost always half the size of the initial drop and concluded that the pinch
off process was independent of drop size, what Thoroddsen & Takehara (2000) refer
to as self-similar. We study in this section what aspects of the pinch off process, if
any, depend on the drop size.

The fact that the time elapsed between coalescence and pinch off scales as

tn ∼
√

ρiR3/σ was used as an argument supporting self-similarity by Thoroddsen
and Takehara (2000). We investigated numerically the dependence of the pinch off
time on Bo and Oh for systems with either gas or liquid as an outer fluid. When
heavy air was used as an outer fluid, the non-dimensional pinch off time, tp , was
approximately 1.7, in good agreement with previously published experimental results
(Thoroddsen & Takehara 2000). Drops with a large Bond number that deformed
the interface pinched off faster, with tp ∼ 1.2. However, as the onset of coalescence
is not well reproduced numerically for drops of large Bond number, we could not
investigate this dependence more systematically. The time of pinch off of undeformed
(spherical) drops was nearly unaffected by variations in Bond number. On the other
hand, increasing the Ohnesorge number partially delayed pinch off and led to values
of tp as large as 1.95 for air–water systems and 2.35 for liquid–liquid systems (see
figure 8). In general, the use of a heavier outer fluid slowed down the process of
partial coalescence. In agreement with out simulations, experimental measurements
of the pinch off time of drops with large Bond numbers were generally faster in
non-dimensional units. Measured times were as small as 1.0 for a drop with Bo = 0.65
(see table 2). Drops with Ohnesorge numbers closer to Ohc also had a tendency
to pinch off slower, with recorded times as slow as 2.14 for the more viscous fluid
n-dodecane. In non-dimensional units, small drops, which have large Oh and small
Bo, thus tend to pinch off the slowest and large drops the fastest.

For identical initial conditions, i.e. a spherical drop coming into contact with a
horizontal surface, figure 9(a) shows that the non-dimensional radius of the daughter
drop depends only very weakly on both Bo and Oh and remains confined between 0.5
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Liquid Viscosity (cP) Density (gml−1) Surface tension (dynes cm−1)

Toluene 0.59 0.87 28.5
Hexane 0.33 0.66 18.4
n-Dodecane 1.44 0.75 26.1

Table 2. Properties of fluids used in experiments displaying partial coalescence as found in the
literature for a temperature of 20 ◦C (Oliviera et al. 1999; Lide 2002). Note that the viscosity
of n-dodecane was extrapolated from measurements taken at higher temperatures, 25 ◦C and
30 ◦C (Tian & Huizhou 2007).
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Figure 9. Dependence of the non-dimensional daughter drop radius (a) and average
downward velocity (b) on the Bond and Ohnesorge numbers. When varying Bo, we kept
Oh =0.0038 fixed; when varying Oh, we kept Bo = 0.01 fixed. Here we use a heavy air–water
system: ρi = 1.0, μi = 0.01, ρo = 0.1, μo = 0.001. The formulas in (b) are linear fits to the
numerical data.

and 0.58. Increasing the Ohnesorge number reduces the vertical extent by which the
drop is being stretched by capillary waves, resulting in slightly smaller drops, while
increasing Bo causes gravity to increase the acceleration of the inner fluid, leaving
less fluid to form a daughter drop. Overall though, the daughter drop radius appears
nearly constant, in agreement with the observations of Thoroddsen & Takehara
(2000). However, when the initial conditions are modified to include the deformation
of the drop and of the interface prior to coalescence, large variations are observed in
Rd . Large drops, with Bond number of 0.5, for example, are seen to yield daughter
drops of radius as low as 0.3. As the drop deforms under the effect of gravity, a
larger fraction of its mass ends up below the surface level even before coalescence is
initiated. Pinch off therefore occurs higher relative to the centre of the drop and less
fluid is left in the daughter drop. These observations are in good agreement with the
trend observed by Charles & Mason (1960a), where most of the data at low Bond
number has a size ratio near 0.5, and that at larger Bond numbers has a size ratio
close to 0.3, and were also confirmed in our experiments. We found that large drops,
with Bond number as large as 0.8, and relatively small Ohnesorge numbers, of order
0.001, produced daughter drops with radii as small as 0.3. However, it should be
emphasized that strongly deformed drops are likely to initiate coalescence away from
their symmetry axis and that the initial conditions used here are only approximate.
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While our code does not allow us to record the bouncing process accurately, we
can nonetheless determine the average non-dimensional downward velocity of the
drop at the time of pinch off. Figure 9(b) shows that, even with identical initial
conditions, the velocity may vary by a factor of 4 with varying Ohnesorge and Bond
numbers. This contradicts the assumption of self-similarity of the pinch off process.
Not surprisingly, larger Bond numbers accelerate the drop downward, as the effect
of gravity pulling on the drop is more readily felt. Increasing the Ohnesorge number
also accelerates the drop, which may appear counterintuitive at first since it implies
that more viscous systems yield larger drop velocities. However, considering that
the vertical acceleration of the drop is mostly due to surface tension pulling down
on the top of the drop, which is opposed by the capillary waves rushing upward,
explains the influence of Oh. As capillary waves are damped by larger viscous effects,
nothing opposes the downward push of surface tension and the drop accelerates
further. Therefore, drops that are near the threshold Ohnesorge number will hit the
surface with the largest velocity and are thus likely to bounce higher than drops with
smaller Oh. These results exhibit the same trend seen in the model developed by
Honey & Kavehpour (2006), where larger Ohnesorge number drops were predicted
to have greater downward speed through their effect on the size of the daughter drop.
Combining their model with that of Aryafar & Kavehpour (2006) for the daughter
drop size yields a velocity at pinch off of

v =
1

e

√
48

5

1

1 − 6
5
Oh

+ Bo.

Compared to our results shown in figure 9(b), their model exhibits a similar
dependency on Bond number, but a much weaker dependence on Ohnesorge number,
observations that presumably result from the fact that their velocity model only takes
direct account of gravity and surface forces.

Similar results were observed in liquid–liquid systems where the density ratio was set
to α = 1.05. The radius of the daughter drop remained fairly constant for various Bond
and Ohnesorge numbers, ranging from 0.43 to 0.53. Note that the daughter drops
are slightly smaller in liquid–liquid systems than in gas–liquid systems. However, the
downward velocity of the daughter drops at pinch off seems to be nearly independent
of the outer fluid’s density, with values ranging from 0.45 to 1.2 in liquid–liquid
systems.

5.5. Satellite and other droplets

Over the course of our study, we observed that satellite droplets sometimes formed
during the pinch off process, as was also reported for large drops in liquid–liquid
systems (Charles & Mason 1960b) and gas–liquid systems (Thoroddsen & Takehara
2000). Numerically, we observed that droplets with a large Bond number initiated
with deformed interfaces could yield a second daughter drop (see figure 10). While
we did not perform a detailed study of when such satellite drops occurred, we noticed
that only drops with Bo > 0.3 yielded these so-called tertiary droplets in liquid–liquid
systems. Gas–liquid systems required even larger values of Bo to exhibit satellite
drops. Moreover, if coalescence was initiated while the drop and interface were still
undeformed, no satellite drops were observed for any Bond number. This indicates
that the initial shape of the drop is determinant in the formation of satellite drops.
After pinch off, the satellite drop finds itself caught between the larger daughter drop
and the interface. In experiments, the satellite drop did not coalesce with either fluid
masses but rather rebounded vigourously as the daughter drop bounced up. The
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(a)

(b)

Figure 10. (a) Sequence of experimental pictures of a drop of hexane with initial radius
0.11 cm (Bo = 0.43 and Oh =0.0045). A satellite drop forms after the first pinch off and is
temporarily trapped between the daughter drop and the lower reservoir before being ejected to
the side. (b) Numerical simulations with parameters corresponding to the experimental set-up
but with heavy air (α = λ=10). Pictures and numerical frames were chosen to emphasize
salient features of the flow and are approximately 0.4 ms apart.

(a)

(b)

Figure 11. (a) Experimental pictures of the coalescence of a hexane drop of radius 0.14 cm
(Bo = 0.70,Oh = 0.004) leading to the ejection of a jet of tiny droplets from the top of the
drop. (b) Numerical simulations with parameters corresponding to the experimental set-up and
heavy air (α = λ= 10). Note that in both experiments and simulations, the surface undergoes
one full oscillation of the top surface between the fourth and fifth frames shown. Pictures and
numerical frames were chosen to display important stages of the coalescence process and are
approximately 0.2 ms apart.

satellite drop usually rebounded at a low angle to the horizontal and with a velocity
such that it quickly left the viewing frame of the camera. A typical satellite drop
radius was 0.1 times the initial drop radius, in fair agreement with those observed in
simulations.

An entirely different kind of tertiary droplet was also observed experimentally for
extremely large and deformed drops (Bo > 0.5). For sufficiently deformed drops, the
convergence of capillary waves at the summit of the drop was sufficiently vigourous to
result in the ejection of one or several very small droplets in a nearly vertical direction
(see figure 11). Larger drops generated the most vigourous jets of several tiny droplets.
Similar jets have been observed in bursting bubbles (Blanchard 1989), but to the best
of our knowledge had not been reported in coalescing drops. Unfortunately, the large
variation of scale between the initial drop and the ejected droplets did not allow us to
fully resolve the ejection of droplets and prevented the convergence of the numerical
simulations. Jet ejection at the top of the drop was occasionally observed in our
experiments (see figure 11), but we have not found a regime in which such ejection
could be reliably observed.
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Figure 12. Critical Ohnesorge number for partial coalescence of a drop–drop system as a
function of the drop size ratio (r = large radius/small radius). The solid line links numerical
data and the dotted line is an interpolation towards the point at 1/r = 0, corresponding to a
drop merging with a flat interface. To focus on the effect of the interface’s curvature, we neglect
gravity: Bo = 0. Other parameters are λ= α = 1 for the liquid–liquid system and λ= α = 10 for
the gas–liquid system.

5.6. Drop–drop multiple coalescence

Emulsions consisting of a large number of suspended drops provide an obvious
context in which multiple coalescence may occur. With this application in mind, we
studied the conditions under which multiple coalescence could occur when two drops
of different sizes came into contact. To reduce the parameter space, we restrict our
attention to cases where gravity has a negligible effect on the dynamics of motion
and set Bo = 0. We consider liquid drops surrounded either by a second liquid of
matched density and viscosity (α = λ=1) or by a gaseous phase (α = λ= 10). For
a given Ohnesorge number, we look for the critical size of the largest drop, while
keeping the radius of the smallest drop fixed. We position the larger drop below the
smaller one to emphasize the parallel between a flat interface and a drop of infinite
radius.

The forces at play during drop–drop coalescence are the same as when a small
drop coalesces with a flat interface, with the addition that the larger drop also tends
to pull the smaller drop towards its centre. The surface tension of the larger drop
generates a downward force of approximate magnitude σ/(rR), where r is the ratio
of the large to small drop radii and R the radius of the small one. This additional
force plays a role similar to that of gravity and accelerates the small drop towards the
larger one. Figure 12 shows the critical Ohnesorge number as a function of the ratio
of drop sizes, r . The value of Ohc found for a flat interface, corresponding to r → ∞,
is shown as a point on the vertical axis. The data obtained numerically and shown in
figures 5 and 12 supports the parallel between gravity (Bond number) and curvature
effects of the larger drop (1/r). While we did not perform a detailed experimental
study of drop–drop coalescence, we have observed the partial coalescence of a small
drop with a larger drop in a parameter regime consistent with that described above.
We also note that partial coalescence between drops of size ratio r = 2 appears to
have been observed experimentally by Anilkumar, Lee & Wang (1991) in a regime
consistent with those of figure 12, but the authors did not discuss this observation in
any detail.
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6. Conclusion and outlook
We have developed accurate numerical simulations of the phenomenon of partial

coalescence. These simulations have been used to confirm and broaden the scope of
experimental results regarding the values of the critical Ohnesorge number for gas–
liquid and liquid–liquid systems. The flexibility of the numerical simulations allows
the detailed exploration of the effects of gravity, density ratio and viscosity ratio on
the partial coalescence process.

Using our numerical model, we were also able to observe the partial coalescence
of two drops of different sizes and were able to determine that the minimal radius
ratio required to observe partial coalescence is approximately 1.6. The low magnitude
of this ratio implies that partial coalescence is likely to occur frequently in dilute
emulsions. We have also determined, both numerically and experimentally, that the
coalescence of significantly deformed drops may result in the formation of satellite
drops and in the ejection of tiny jets, which may be relevant to the formation of mist
by breaking waves.

At present, the available simulations are not adaptive in space and therefore have
difficulties describing the small scales associated with the final stages of the pinch
off process, the drop recoil and the bouncing of the drop on the interface. All of
these issues could be addressed by the use of an adaptive grid, which would increase
the resolution near the interface. Increased local resolution could also help determine
more accurately the conditions under which satellite drops and jets may form, as both
of these features occur over small scales and for deformed drops. Despite the current
limitations, we have been able to quantify the extent to which partial coalescence is
a ‘self-similar’ process and quantified a previously underestimated dependence of the
daughter drop velocity on the fluid viscosity. This dependence may be incorporated in
existing models predicting the bouncing of the daughter drop (Honey & Kavehpour
2006).

Our investigation has focused on viscosity ratios μi/μo of order 1 or larger. The
regime of small viscosity ratios has also been observed to yield partial coalescence
(Aryafar & Kavehpour 2006; Chen et al. 2006; Gilet et al. 2007) with different
characteristics: pinch off time scaling with viscosity, smaller daughter drops, larger
critical Ohnesorge number. While there is abundant evidence of the importance of
capillary waves in the inertial regime, these waves are not present in the viscous
regime, which indicates that partial coalescence there relies on a different mechanism.
Preliminary numerical results did not seem to agree with experiments, which may
be due to a lack of resolution of the viscous boundary layer that is expected to
play a greater role in this viscous regime. More work is thus needed to provide an
understanding of the mechanism allowing partial coalescence to occur in the absence
of capillary waves.

Other aspects of realistic partial coalescence have yet to be investigated in
detail, either experimentally or numerically. Marangoni effects due to composition,
temperature or surfactant concentration differences between the drop and the
reservoir, may alter the outcome of the merging process. More importantly for
practical applications, the impact velocity of the drop may affect the dynamics of
coalescence. The regime of small but non-zero drop velocity (Weber number) has yet
to be investigated and needs to be better understood before the relevance of partial
coalescence to realistic applications can be assessed. Unfortunately, preliminary results
revea that both simulations and experiments are very sensitive to the exact conditions
of the thin film of outer fluid separating the drop and the reservoir, and repeatability
has been difficult to obtain when considering a non-zero impact velocity.
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